Adversarial Classification on Social Networks

نویسندگان

  • Sixie Yu
  • Yevgeniy Vorobeychik
  • Scott Alfeld
چکیده

The spread of unwanted or malicious content through social media has become a major challenge. Traditional examples of this include social network spam, but an important new concern is the propagation of fake news through social media. A common approach for mitigating this problem is by using standard statistical classification to distinguish malicious (e.g., fake news) instances from benign (e.g., actual news stories). However, such an approach ignores the fact that malicious instances propagate through the network, which is consequential both in quantifying consequences (e.g., fake news diffusing through the network), and capturing detection redundancy (bad content can be detected at different nodes). An additional concern is evasion attacks, whereby the generators of malicious instances modify the nature of these to escape detection. We model this problem as a Stackelberg game between the defender who is choosing parameters of the detection model, and an attacker, who is choosing both the node at which to initiate malicious spread, and the nature of malicious entities. We develop a novel bi-level programming approach for this problem, as well as a novel solution approach based on implicit function gradients, and experimentally demonstrate the advantage of our approach over alternatives which ignore network structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Detection of Fake Accounts in Social Networks Based on One Class Classification

Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Adversarial Network Embedding

Learning low-dimensional representations of networks has proved effective in a variety of tasks such as node classification, link prediction and network visualization. Existing methods can effectively encode different structural properties into the representations, such as neighborhood connectivity patterns, global structural role similarities and other highorder proximities. However, except fo...

متن کامل

Effects of Social Network on Students’ Performance: a Web-based Forum Study in Taiwan

This research investigates the effects of social networks on students’ performance in online education which uses networking as an adjunct mode for enhancing traditional face-to-face education or distance education. Using data from a 40-student course on Advanced Management Information Systems (AMIS), we empirically tested how social networks (friendly, advising, and adversarial) related to stu...

متن کامل

Detecting Adversarial Examples - A Lesson from Multimedia Forensics

Adversarial classification is the task of performing robust classification in the presence of a strategic attacker. Originating from information hiding and multimedia forensics, adversarial classification recently received a lot of attention in a broader security context. In the domain of machine learningbased image classification, adversarial classification can be interpreted as detecting so-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.08159  شماره 

صفحات  -

تاریخ انتشار 2018